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ANALYSIS OF TWO-DIMENSIONAL STEADY-STATE FILTRATION 
INTO A SOIL LAYER WITH A STRONGLY PERMEABLE FOUNDATION* 

V.N. EMIKH 

By means of conformal mappings, a hydrodynamic solution of the periodic steady- 

state nonartesian filtration problem is solved for the case of a system of channels 

in a homogeneous soil layer subjacent to a highly permeable artesian waterhorizon, 

assuming there is drainage and uniform infiltration to the free surface Or evapora- 

tion from it. A system of equations for the unknown parameters of the mapping is 

derived, and its unique solvability for definite constraints on the physical para- 

meters of the model established. An algorithm for computing the basic filtration 

characteristics in the direct formulation and for finding the boundary points at 

which the current separates into flows at different directions and also for comput- 

ing the flow rates of each flow is programmed for a computer, In the subsequent 

analysis, the role of horizontal drainage andother factors is elucidated, and their 

influence on the shape of the depression curve determined. Limiting flow cases are 

studied, for example, current without horizontal drainage, current where there is 

complete ponding surface, and current where there is no ponding (V.V. Vedernikov 

problem /l/). Certain related problems obtained as a result of continuing the 
solution for the basic model relative to the parameters of the mapping are consider- 

ed. 

1. Basic model. In Fig-la may be found a schematic representation of nonartesian 
steady-state filtration in a homogeneous soil 1ayerTunits thickwhere filtrationproceeds froma 

system of periodically arranged channels into tubular drains lying in the midstofthechannels 

and at the same depth. It is assumed that there is uniform infiltration to the free surface 

or evaporation from it at a rate s and at a constant head h = -H at the base of the soil 

layer which is equal to the head in an subjacent,strongly permeable water horizon. In the 

current half-period under consideration, the channel is modeled by a linear source GE along 
which h = 0, and the drain by a point outlet Blocated at a depth fi from the surface. The 
distances between the edges of the neighboring channels and between the neighboring drainage 
effluents amount to 21 and 2L. respectively. We agree to use the reduced complex coordinate 

z = z i- iy and the reduced complex potential o = m + il) which are related to reduced physical 
quantities zph and up,, by the relationships (X is the filtration coefficient) 

z=z&, o= mp,,/$T) (1.1) 

We introduce the Joukovskii function 6 = 0 f iz /2/ and Numerov function 9 = W + iE2 

/3/. By means of a conformal mapping of the regions 8 and Q (Fig.lb,c) to the half-plane 
Irnc> 0 (Fig.ld), we find 

(r - u) du 
+ iQ8 = 

sF(arcsinm,k')]+iQ,; --b<c<g 

(1.2) 

(1.3) 
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Il. I: 

il. 51 

mare Q and Q,=Q,;-aI are the filtration rates of the drainage and the surface water; 
Q,* flow rate from the channel within the region under consideration; P and @, elliptical 

integrals of the first and second kind in the narmal Legendxe form, 
in the case of the complex speed w = w, - iwv we have from (l-2)- (1.4) 

Within the framework of the basic model, the following conditions must hold: 

f E lo, bl, I G f-b, gj il. 71 

These conditions govern the position af the pressure maximum point Fan the sequent AB and 
the point flat which iZ = ie on the boundary. As will be explained below, these relations 
ultimately impose constraints on the physical parameters of the model. 

For a given value of Q, the flow rate Q5 and the five parameters of the mapping i&d, 
g, f, and rf are to be determined. Once we know the values of .&I, j3, T, H, and at we may 
then use the representations (1.2)- (1.4) to arrive after some algebra at a system of equa- 
tions for these parameters (in terms of (1.1) we have T c= 1): 

Here Zis 
sion curve is 

The flow 

By the first equation of (1.8), the second condition of 11.7) ObvibUs~y holds whenever 

e< N, Q> 0; the constraints on e will, henceforth be improved. After several transformationS 

of the second equation of (1.81, we may prove that whenever Q>O f the relation f < b also 

holds " The limiting case f ==o is worth notiny. Using the integral representatiOnS (1.x) 



689 

and (1.4), substitution of which in (1.2) leads to the complex-parameter equation of the 

depression curve, we find that (dY/dz)= -oo if f=O; that is, the point A becomes the 
E-0 

cusp of the depression curve. By (1.4), we have ReO>O,p<O 

AB, and a further reduction in the pressure p in the drainage 

of air into it. Such a critical drainage mode had even be noted 

Let us study the solvability of the system (1.8). Assuming 

fixed, we consider the third and fourth equations as a subsystem 

F, (4 = fs Id, g (41 = (1 - e)L 

F4 (d, 4 = fr Id, g, f (41 = (1 - e)Z 

on the remaining portion of 

zone will lead to leakage 

by V.V. Vedernikov /5/. 

that the parameter b is still 
in the parameters d and g : 

(1.11) 

In this notation, F,(d) is a composite function of d. The parameter g(d)is determined 

in this function from the fourth equation of (1.8), while the parameter f(d) in the latter 
equation is determined from the second equation in (1.8). 

a b 

j Y-Y 

Fig.1 Fig. 2 

Differentiating the left sides of equations (1.11) with respect to the parameters d and 

g /4/, we find that, by (1.7) and (1.5) and the first two equations in (1.8), 

8fs nM(l+b)(r-63 -= - 
8R 
af3 

ad=- 

-4(d-l)(b+d)K' 

- 

-=- 

aF* _ 
ad- <o 

(1.12) 

(1.13) 

As a result, we find that 

dFs(d) afs 
dd=ad 

- 2k(_y2$) <o (1.14) 

By (l-13), the function g(d) determined by the second equation of (1.11) increases mono- 

tonically, and since 0 <g< 1 then d< d,;. the value of dr is found from the equation 

P1 (d,, 1) = (1 - s)l. Since F,(I)-= m, and F,(d,) = F,(d,, I), we conclude that (bearing in 
mind (1.14)) whenever L> I, the first equation of (1.11) has a unique root in the interval 

(1, d,). 



690 

Thus, for a fixed value of b and under the conditions (1.7), the parameters d, g, j ar.<i 
r are found uniquely from the first four equations of (1.8), 

mines 
while the fifth equation dete:-- 

$ as a function of b. The relation fi (b) was studied numerically. 
In Fig.2 the relation is represented by the solid lines L = 1.5,1= 1.3j,H= 0.05 and 

for Q=O.OS;O.Z;O.S and 2.0 (curves I-4, respectively). 
&=O 

In the case of fixed flow rate Q, 
the function b(a) attains its minimum 6*(Q) at some value b*= b-(Q), such that f= 0; in this 
series, it was found that b* = 0.90292;0.04595; 0.2339;4.479. Further, we have f> 0 if b> b* and feet 

if b < b*. The interval (b'(Q),m) of values of the parameter b is, consequently, acceptable 
within this model; segments of the curves on the right of the y-axis correspond to 
interval in Fig.2. 

this 
If 6 belongs to the interval @*(Q).l), this means that the sink ma) 

operate with a selected flow rate ZQ only if it is at a depth not less than 

B=B', tho!ih(QLhis ::ow it will work with a flow rate of 24 in the critical mode (f= O), 
rate is not attainable if the sink is located at a higher point. The broken lines, which re- 
present the relation #A (b,Q) (cf. (l.g), asymptotically approach the line y = yAO = yAla_ = 
0.04406 as b-m and p-1; that is, tllc influence of the sink on the depression curve at- 
tenuates without bound as it approaches the lower horizon. The meaning of the dotted lines 
will be explained in Sect.4. 

Passing now to the initial formulation, we conclude, based on the foregoing remarks, that 
whenever 8 = fY' E (yAo, I), the choice of Q is bounded by some value of Q* (v) corresponding 
to the critical mode; the curve @(b, Q*) comes into contact with the line fi = fi" while 
curves fi (b, Q) if Q < Q* cross it. 

the 
The monotonic nature of the relation B (b) 

terval (b* (Q),co) 
in the in- 

of acceptable values of b established by the computations is used to find 
the interval using the fifth equation of the system (1.8). In the process of the numerical 
solution of this equation for each of the selected values of b, the parameters d,g,f and 
r are determined from the first four equations of the system. 

One possible formulation involves determining the magnitude of the pressure tid at 

point B, with coordinate z = ipr (Fig.la); 
some 

the equipotential passing through it approximates 

the actual shape of the sink. As is shown by computations, a monotone increase in Hd accom- 
panies an increase in Q, consequently Hd E(H,",H~*) if Q=(O,Q*). 

Computation of the basic characteristics of the current in this formulation togetherwith 

a determination of the values of L,Z,H,e,fi,flr and Hd was programmed in the Alpha language for 

the BESM-6 computer. At first we computed both limiting caseswhichserveto bound the basic 

model, i.e., Q=O and Q=Q*. Further, for Nd~(Hdo.Hd*), the corresponding value of Q is 

determined by iterations with interpolation on each iteration. On the first step a linear 
interpolation is performed using the values of Hd and Q for the above limiting cases as the 

reference values; then a quadratic interpolation is performed. In all the computation ex- 

amples, the value of Hd even on the third iteration approaches its specified value with a 

relative error of IO-'. Thus, for the variant L = 3.5, I = 2.25, p = 0.4, PI = 0.3875, H = 0.1, Hd = 0.38, 

and e=O, we find that Q(') = 0.1613, 0.1647. and 0.1649 after first computing the values of 

H,i' = 0.0989,4* =0.1819, and Hd*= 0.4160 ; correspondingly, H&i) = 0,3731,0.37966, and 0.360901 (i = 1, 

2, 3). N.S. Kolodei participated in the compilation of the program and in the computations. 

2. Hydraulic and reclamation analysis of the current. A direct approach in the 

computations can be used to study the role of each of the characteristic physical parameters 

of the model. Of particular interest is the analysis of the structure of the current, which 

may be divided into flows of different directions; in the case of evaporation, for example, 

thereexist sevenpossible branching alternatives. In concrete examples, the program must 

anticipate the discovery of a corresponding alternative along with the limiting points of 

the flow interface and the flow rate of each current. 

In Fig.3 may be found the flow pattern for L = 2.5,Z = 2.25,H =O,i. 6 = 0.4. & = 0.3875, and H,! = 

0.38. The solid lines and values of the flow rates in the unbroken circles correspond to e = 

-0.1, and in the broken circles to e=O.i. The depression curves for Q= 0 and Q=Q* are 

indicated by the markers (0) and (*), which are appended, in the limiting cases, also to the 

flow characteristics. Within the region the separating lines of flow are plotted in an approx- 

imation. 
In the alternative with evaporation, the basic computational mode with values HI = 0.38. 

Q = 0.1228, and yA = 0.3401 is characterized by the dominance of ascending flows near the criti- 

cal flow at which ff.[ = 0.3966, Q = 0.1294, and yA = 0.3771 ; further, the difference between the 

depression curves for these modes is captured in Fig.3 only above the sink. The latter ah- 

sorbs only the underground water and substantially reduces the groundwater level only irl 

its immediate neighborhood; in the process Of reChmatiOn, this drainage system is not con- 

sidered feasible /6/. In the second case, the current is adjusted. Surface water now pre- 

dominates over underground water in the drainage effluent, and the amount of undergroundwater 



that infiltrates is markedly 

tion is analogously reflected 

have QC= 0,0933 and Q=O.O30i, 
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reduced from its level in the preceding alternative. Infiltra- 

in filtration from the channel; thus when e=-0.i and 0.i 

respectively. 

we 

Fig.3 

% 
a 

Fig.4 

Such an attenuation trend for the role of one factor that affects current in opposite 

ways, once its opposing factor is activated (infiltration and replenishment from a pressure 

stratum and filtration of river water and precisely such factors) are of the nature of laws 

in these processes. It is also seen in Fig.4, which is constructed for the case H = 0.1, (3 = 

0.4, p,l = 0.3875, Hd = 0.38, and & = 0 with L - I = 0.25. i.e., for a fixed width of the channel. 

As I and Lincrease, while the seepage rate of the sink Q decreases overall, its component 

QCd decreases due to the channel, but in addition the proportion of the underground water 

QUd increases. A second result of this trend is seen in the increase in outflow from the 

channel in the lower horizon which competes with the sink, but in proportion to its distance 
from the horizon; the overall seepage rate from the channel Q.- decreases in this case. The 

fact that the curves Qc and Q," approach each other indicates the interaction between the 

channel and sink attenuates with increasing 1. The broken lines indicate the dynamics of 

the point R which, in the case &=O, is a limiting point at the separation between the 

flows. As 1 increases, it turns, together with the segment ED, into the base (when Z= 0.807) 
and then moves along the base, completing a return motion immediately before the transition. 

Infiltration plays a major role in the formation of the current. As we noted earlier, 
an increase in infiltration is compensated by drainage, the function of which may be also 
carried out by the lowest horizon; at the same time, inflow of river and underground water in- 
to the soil layer reduces, and the free surface rises. According to computations, as E in- 
creases the point B, which is the section top point of the region P (Fig.lc), moves along 

the boundary towards the point G, merging with it at some definite value e = a++ 
To study the flow transformations occurring here, let us return to the depression curve. 

Bearing in mind its complex parameter equation (1.2), and substituting in the latter the in- 
tegral representations (1.3) and (1.4) for the functions g and 8, we find that 

dy 
dl= -- -&gfqql/&; 0,<5<g G/d5 _ 

d44 
O'Y x (1 -E) (b--VW p (6) (b + E) ,'(i -0 Cd-C) -z_ 
ti.cl ZQb(b+r)J'(i+b)P+d) cr+VvYPP 

P(5)=(2r42f-g)52-g(3f+r)5+fgr= 

(2r + 2f - d (5 - r1) (5 - 4 

(2.1) 

(2.2) 

By (2-l), when e = e' and r=g* we have dyldx =0 for 6 = g. Such smoothing out of 
the depression curve at point G indicates the onset of underflooding, which develops with a 

subsequent increase in e, but now within the framework of a different hydrodynamic scheme, 
where r<g (cf. Sect.4). The quantity e* is the maximally acceptable value of e in the 
basic model and is related to the other physical parameters and is computed in each particular 

alternative. 
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Thus in the case L = 1.5, 2 = 1.35, H = 0.05, fi = 0.4, PI = 0.3875, and H, = 0.38, we finii tnat 
E' = 0.0979. Note that without drainage a complete underflooding along with emergence of tlhir, 

entire depression curve AC on the surface occurs at a= H /7/, and consequently, at 
E* = 0.05 in this alternative; 

Q=C), 
drainage seems to create a reserve for an increase j.n infliltra- 

tion. 

According to (2.2), the roots rl and r* of the trinomial P(c) are real whenever tnl? 
following inequality is fulfilled: 

g - @ + 9/g/r > 0 (2.0 

If, in addition, the constraints (1.7) are satisfied, then, as can be verified, 

(0, g); the 
71.2 E 

curve AG has two inflection points, and, along with the general decreaseinthe 
ground water, there occurs an additional local depression directly over the sink. 

Based on the first two equations of the system (1.8), we may prove that limr = -b - 0, 
lim(-/) = -b + 0 as Q-0 (cf. Fig.ld), consequently, 
Q=O, i.e., 

g - 8f + Sfglr = - 8 (b 4- g) < 0 when 
the curve AG is concave throughout its length. Thus a local depression is 

completely attributable to artificial drainage and, according to (2.3), clearly arises when 
drainage is increased, which, as was explained in Sect.2, accompanies a decrease in the para- 
meter f. From this standpoint, it is natural to consider a local depression as a state that 
precedes the breakdown of the dynamic equilibrium of the depression curve when 

By (2.3), 
Q> Q*. 

the appearance of inflection points on AG is predetermined once infiltration 
increases, since D,-g+f>O if szs*,rzg. Also, here artificial drainage becomes an 
indispensable condition for the inequality (2.3); however, in this situation, which, asnoted 

above, precedes underflooding, it is more proper to speak not of a local depression, but 
rather of a local rise of the ground water level in a neighborhood of the channel. 

In the above examples, we have found a comparatively low efficiency of the horizontal 
drainage where there is a further powerful drainage factor, such as a highly permeable sub- 
jacent stratum. 

This conclusion is also clear if we consider Table 1, in which the values of the inflow 
to the sink from below QWi. and the surface Qsl r and the outflow QS,, of surface water to 
the subjacent horizon are presented, as computed for several values of Hand for Q=Q* in 
the case L = 2.5540, 2 = 2.3008,fi = 0.3822, and s=O, i.e., within the limits of the capacity of the 
sink. At low H, these capacities seem at first glance to be significant, particularly if it 

is borne in mind that for a system with a confining stratum /8/ at these values of the para- 

meters L,l,p, and E, we have Q* = 0.0759, though deep-lying water is basically drained, while 

the drainage system, as already noted, does not meet the purpose designated for it /6/. As 

H incrases, it in fact becomes inoperable. However, in accordance with the above law, at 
some stage of attenuation of the effluent, entry of surface water into the sink is activated 
as the seepage flow rate Q, of the surface water increases in general, thereby partially com- 

pensating the shortage from the subjacent stratum. 

Table 1 

~ 

3. Limiting cases. We now wish to discuss several flow systems that are limiting with 

respect to the above basic model. 

Filtration without artificial drainage. In a study of artificial drainage /7/, 
the decrease in the seepage flow rate from a channel together with an increase in infiltration 

or effluent was explained analytically. Attenuation of the effluent, by contrast, leads to a 

significant (roughly exponential halfway between the channels) decrease in the rise in the 

ground water from the channel and to a drop in the length of the zone within which this rise 
occurs; this confirms the well-known interpretation of vertical drainage as an effectivemeans 

of water drawdown. At low effluent values, such flow is close to that considered previously 

by S.N. Numerov /9/ for an isolated channel system. 

Complete ponding. In this case the expression for o is obtained from (1.3) with g=O. 

Further we have 



L du 
‘=z L F(arcain r/f, k) 

=7 
0 

u (1 - u) (1 - kh) 

me modulus k of the elliptical integral is determined from the equation 

K/K’ = L 

Expression (1.10) is reduced, by means of (3.1) and (3.21,to the form 

Qs= HL+ Q (1 -B) 

(3.1) 

(3.2) 

(3.3) 

At low values of k, the approximation relations 

k,z4c-%L/2, K'- IT --* K=lai 
2 k 

(3.4) 

are satisfied; based on these relations we find that, for example, with RECD, 

Q =: (Ha - &H) ($ arth J/6)-‘; b z ti$ + ; b, z tga ?f? (3.5) 

2Q Q,,=;;- arc@ 
Ir 

+-Hz& zR z; arcth v; 7~ ;$+_"," 

The relative error of these formulas 6 = 0 (k”), therefore they may be used beginningwith 

values of L=3-4. 

In this case, we have for the seepage rate 

z-i H+Qn'-5 
( ) b+5 

(3.6) 

In accordance with (3.6) and (3.1), we may write 

1 - t = 0 (k’), W = fH + 0 (k’), L/2 < z < L (3.7) 

for the points of the right half of the filtration region /lo/. 
Thus flow here is close to the one-dimensional descending case, and the influence of the 

sink is manifest only in some neighborhood of the sink. Such localization is reflected in 

Fig.5, which is constructed using computations for L= 2.5,H= O.i, p= 0.4,p1= 0.3875, and Hd = 0.38. 

In the case under study, the role of horizontal drainage in the diversion of surface water 

becomes more important than in partial ponding, though its effectiveness here is determined 

largely by the pressureinthe subjacent stratum; this is clear fromthe first formula in (3.5). 
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Fig.5 

This limiting case may be in- 

terpreted also as planned filtration 

to a completed well sunk in a band- 

shaped stratum along a line parallel 

to its constant pressure boundaries. 

Drainage of unflooded soil 
layer. In this case Vedernikov 

constructed a solutionusing conformal 

mappings /l/. In /ll/, the problem 
was solved in a different way using 

the Fourier method and numerical com- 

putations. We will proceed here from 

thevedernikov solution, which may be 

obtained from (1.2)- (1.5) by a 

transition to the limit as g, r-D 1. 

In the notation of the article, the 

equation of the depression curve is 

written in the form 

The parameters b,d and f are found from the second, third, and fifth equations of the 
system (1.8); in the last two equations, it is first necessary to perform this transition to 
the limit. In Table 2 may be found values of Q,g*, and 1/E computed for L= 1.5, H=d.O5, p=O.4. 
fil = 0.3875, and H,+=0.38 for several values of the parameter e. An increase in E induces 
drainage and a rise in the depression curve, whose highest point E at E= 0.09346 reaches the 
surface of the soil, while when &=O.l it is already above it. At values of E at which part 
of the surface is flooded, the flow must be considered within the framework of thebasicmodel 
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which, consequently, iS a natural extension of the Vedernikov problem. 

Table 2 

4. Related systems. Let us discuss certain systems that may be described by (1.2)- 
(1.5) beyond the limits established by relations (1.7). 

1) From an analysis of the second equation of (1.8), we find that Q<O if f< b, which 
corresponds to flow from a forced drain. 

c’ 

Fig.6 Fig.7 

2) As remarked in Sect.2, the inequality 
r<g is true when E>&I. For this combina- 

tion of the physical parameters with a value 
E' = 0.0979, the computations were also perform- 

ed for e=0.15 and E= 0.2; we found r = 0.9534. 
g = 0.9917,ss = 1.1167, ye = -0.0204 , and r = 0.9089. 
g = 0.9876. x1< = 1.0100, and yR = -0.0486. The point 
K is now the vertex of the hillock of ground 

water formed in a neighborhood of the point c 

(it is understood that there is soil everywhere 

there is a flow of water). If E = 0.15, the 

segment CE operates partially as a slotted 

drain up to the point with abstissa 1.3990, 

and when E = 0.1 , operates entirely as such 
a drain. Its vertex with z-value 1.3490 and 

1.3463, respectively, is close to the point at 

which the depression curve reaches the sink 

(3G = 1 = 1.35) . The previously noted features 

of the flow are also clear from the computat- 

ional alternatives discussed here; an increase 

in Q from 0.2578 to 0.2755 accompanies an 

increase in s from 0.15 to 0.2, though in 

this case we have ~,,=0.0811 and 0.0647, i.e., 

replenishment of the sink from below attenuates and, as already noted, filtration into the 

soil layer from the segment GE halts. 

3) A markedly different hydrodynamic meaning is acquired by the system that appears as 

a result of the continuation of the initial solution into the valuation domain f<O; in Fig. 

2 it is to the left of the y-axis. Flow whose near-sink fragment is represented in Fig.6 

corresponds to the same combination of initial parameters as the curves in series 3 of Fig.?, 

and to the value b = b*.10m3. Here f= -0.00855; the point P (-!1.3379; 1.0216) is the leftmost 

point of the depression curve. The flow pattern is similar to that described in /12/ for the 

case of an isolated sink in a stratum of unbounded thickness. Thus the ground water from the 

channel and the underlying horizon overflows at a ratio 1:9 from the boundary point of separa- 

tion of these flows M(1.5,0.6031) across a vertical screen with vertex at the point s (0; 0.7741) 

and captures the drainage effluent from R(n;i.3596) located on the screen surface on the out- 

side of the feeding sources. The dotted line in Fig.2 represents the relation 31s (b) with 

b<b’; their point of tangency with the solid curves P(b) corresponds to the point at which 

the discharge of B reaches the vertex of the screen followed by a transition to its outer 

surface. 
For each of the computed values of Q, the discharge B and the point A move down along 

the screen surface to infinity as b-0. Thus with Q= 0.05;0.2, and 0.5, the curves y,(b) 

approach the asymptotes, i.e., the position of S is stabilized. But if Q = 2.0, it drops to 

the base of the soil layer once bz b*.10-0.8; with a further decrease in the parameter b along 

the continuation of the roof of the highly permeable horizon, a slot appears that is connect- 

ed with the latter and that delivers a flow at the same pressure. To prevent bivalent behav- 

ior in the flow region, the system described, like analogous ones from /12/, may be inter- 

preted physically solely within the framework of unilateral inflow towards sink. 
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In the case of the variant depicted in Fig.7 and computed for H = 0.1. E = 0, Q = 0.8, t, = i, 

g = 0.9999, d = iO6, and T = 1, we find that L = -0.0744, 1 = - 0.5ftt1I, and p = 1.3550. Since the entire 

filtration region is found inthehalf-plane I< 0, we may return to the bilateral inflow 

system, in which case we have the following pattern: drainage flow B (0; 1.3550) below a trench 

whose pre-image is equal to the underlying horizon with impermeable walls ES and E'S' 

buried at the level II= 1.2495 and a permeable floor DD’ (in the initial model, the base of 

the soil layer). In addition to the flow from the trench, water also drains from the surface, 

which is flooded on both sides up to the point C(-0.5016;O) and c'(O.5016;0), and the flow rates 

are 0.742 and 0.858, respectively. At the flow boundary, we encounter flows on the wall 

surfaces external to the drain and at the points Mand M'with ordinate 1.2477. Higher up, 

at g = 1.2448. points F and F’ are found at which )w\= I+= 1; in this case, they are points 

of minimum pressure along the segments ESD and E’S’D’. Asinthe preceding system, current 

here is realized where there is a definite mode for the creation of a vacuum along the seg- 

ment AB . Once this vacuum is strengthened, this will lead to a gap in the drain below the 

outside air, and when the vacuum becomes attenuated, part of the ground water is no longer 

captured by the drain and escapes downward. 

Note that this somewhat simplified, though nevertheless more natural modification of the 

last system (without a trench with walls) leads to the capture problem for horizontal vacuum 

sinks inwhichthesinks serve to trap lower-lying ground water layer which may subsequently 

be returned to the irrigation network. 

Characteristic features of the current in the basic and related systems may be explained 

analytically. Based on (1.6), we have 

dw 

-=-’ [B-W'((5)]* 
BP--E)W’K) ; W,(L)=_ p (5) 

d6 2 (r - 5) vmF5 
(4.1) 

The quadratic trinomial P(g) determined in accordance with (2.2) has real roots rl and 

rB when condition (2.3) holds. As noted in Sect.3, under the constraints (l-7), i.e., with- 

in the framework fo the basic model, r,,l E (0, g), and, consequently, du-/d:#O along the entire 

fixed boundary. In related systems, the situation is different. Based on (2,2), we may 
prove that, in the case of r,, the transition of R, to the segment GE corresponds to a 
transition of R to the depression curve AC; on GE, R, becomes the maximum point of Al'". 

At some point of GE (the terminus of the drainage slit), the abscissa = (5) attains a 
minimum,and the flow rate is infinite; two variants of such flow are described above. Simil- 

arly, the points F and R, in the limiting case f=O merge into the point A, and as the para- 

meter f successively decreases, varies its relative position along the boundary, as well as 

from the standpoint of physics; in this case, the minimum point of the ordinate u(5). or 
vertex of the screen, appears on the segment AB. According to the foregoing, for a definite 
combination of the parameters of the mapping, such extrema may also appear on the boundary 

segments CD and DE. In each particular variant, computations must reflect the values of 
the coordinates of all the characteristic boundary points and, thus, the basic details of 
the flow pattern are explained. 

In /13, 14/, functional relations for certain filtration systems were used to derive 

general-type relations between the complex potential and the complex coordinate. A semi- 
inverse approach allows for the possibility of approximating the form of the individual bound- 
ary segments (shape of channel profile, slope of earthen dam) by a given form by varying the 
constant coefficients in the solution. Subsequently, it was explained /15/ that for certain 
values of the coefficients these segments may turn out to cross themselves. That is, bival- 
ent behavior is seen in the flow region under its initial physical interpretation. In the 
case of the multi-parametric problem described above, an analogous disturbance of univalance 
accompanied by departure from the scope of the basic filtration system whenever 1< 0. 
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